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Abstract
Coding for computer programming is a commonway to support and
assess computational thinking (CT) skills, a set of problem-solving
skills essential for computer science (CS) and STEM more broadly.
We designed a coding platform, Fox and Field, to determine what
kinds of scaffolds can encourage novice coders to behave more
like experts. We compared actions between 221 upper-division
undergraduate CS/engineering (expert, n=106) and social science
(novice, n=115) majors randomized to scaffolding conditions from
four universities in the United States. Overall, experts used sta-
tistically significantly more practices aligned with CT skills, such
as those that increased code efficiency (e.g., non-right angle turns,
loops). This difference disappeared when novices were scaffolded
by being told to use fewer codes or by priming with critical fea-
tures. Both experts and novices were equally likely to be swayed
by purposefully distracting features within the platform, such as
a drawn path to deflect them from the most efficient solution. Re-
sults present initial evidence regarding which features of coding
platforms can direct students to exercise CT-linked practices, lead-
ing to recommendations regarding platform development to better
support learning.

CCS Concepts
• Social and professional topics → Professional topics; Com-
puting education; Computational thinking; Professional topics;
Computing education; Student assessment; Professional topics;
Computing education; Computing education programs; Computer
science education; • Software and its engineering → Software
organization and properties; Contextual software domains; Vir-
tual worlds software; Interactive games; • Applied computing →
Education; Interactive learning environments.
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1 Introduction
Computational thinking (CT) is a critical set of problem-solving
skills that should be introduced and developed not only in com-
puter science (CS) but also in other STEM subjects [1, 2]. The CT
skills which include algorithms, patterns, abstraction, as well as
decomposition, are fundamental for addressing complex problems
and improving efficiency [3]. In the practical education context,
coding usually serves as one basic pedagogical approach to instruct
and assess CT competencies [4]. The iteration behavior of writing
code, testing the model, and debugging errors could indicate the
cognitive processes introduced in CT [5].

However, as coding involves certain levels of cognitive ability
and abstraction, experts and novices perform tasks much differently
in coding and cognitive strategies [6]. Moreover, experts lever-
age efficient logical and relatively systematic writing behaviors,
demonstrating deep understanding and higher-level abstraction
[7]. In contrast, novices often rely on trial and error, displaying
superficial problem interpretation and difficulty in utilizing ab-
stract concepts effectively [8]. Therefore, identifying differences
in problem-solving behaviors between experts and novices could
better design associated support and scaffolding for novices.

In this study, we designed a coding environment, Fox and Field,
to test whether experts and novices perform differently in problem-
solving (e.g., code efficiency) and whether certain scaffolds can
prompt novice coders to perform expert-like behaviors. In this
environment, learners need to control a virtual fox to follow certain
instructions and reach the final goal point through block-based
coding. Learners could use fewer non-right angle turns to save the
code length compared to more right angle turns and demonstrate
code efficiency. Scaffolds, in this context, refer to prompts and
conditions that provide guidance and opportunity to learners, en-
hancing their task performance [9]. Our environment incorporated
scaffolds, such as marking critical features and providing prior prac-
tice opportunities, aiming to guide learners’ focus and facilitate
skill transfer.

To this end, we ask two research questions:

• Are participants more likely to use the non-right angle turn
(NRAT) when they are given an efficiency instruction?

• Are participants more likely to use the NRAT depending on
their training level condition?
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2 Literature Review
Papert coined the term CT in the 1980s and claimed it as a powerful
literacy [10]. He also described it as one of the critical learning
outcomes through Logo programming. Decades later, Wing, in 2006,
promoted CT to the field of science, technology, engineering, and
mathematics (STEM) education and also linked it to broader subjects
[3]. Ever since then, CT has been defined with various versions,
but generally focuses on problem-solving [11]. Several researchers
defined CT in the programming context. For example, Brennan
and Resnick developed the block-based programming environment,
Scratch, and showed their three assessment dimensions for CT,
including concepts, practices, and perspectives [5]. Weintrop et al.
classified CT into four categories including data practices, modeling
& simulation practices, computational problem-solving practices,
and systems thinking practices [2]. Although CT can be instructed
and assessed by programming, CT has also been defined more
broadly as competencies needed in both specific knowledge and
general problem-solving, which include decomposition, abstraction,
algorithmic thinking, and debugging [12].

Problem-solving behaviors can vary depending on domain
knowledge. For example, experts often exhibit functional and be-
havioral understanding that novices lack [13]. Similarly, Jessup
et al. investigates how expert and novice programmers differ in
their code comprehension and perceptions of code [14]. Leveraging
eye-tracking data, in source code reading behavior, Aljehane et
al. showed that experts and novices read source code statistically
significantly differently, where experts use more efficient eye move-
ments [15]. Considering debugging behaviors, experts utilize more
complicated debugging strategies that novices usually cannot han-
dle [16]. These studies demonstrate the difference between experts
and novices and provide the foundation for developing associated
scaffolding.

Experts and novices face different struggle points and miscon-
ceptions during problem-solving. Denny et al. discussed some
cognitive difficulties novices face in automated assessment tools
and called for associated scaffolding [17]. Scaffolding could benefit
the learning outcomes and perceptions by reducing of degree of free-
dom, demonstration, and marking critical features [9]. For example,
Rego et al. investigated how various feedback modalities (such as
visual, auditory, and haptic feedback) influence the cognitive load
on novice users [18]. One great effort is the research and practices
in block-based programming environments, which removes syntax
errors and focuses learners on logical thinking and problem-solving
[4, 19]. In block-based programming, novices could benefit from
structured guidance, including worked examples and annotation
styles [20]. Besides reducing problem complexity, demonstrating
or modeling solutions is another promising method. Denney et al.
showed that solving test cases before programming could signifi-
cantly improve novices’ problem-solving process, which provides
evidence that prior condition could impact their behavior [17].
Lastly, some studies demonstrated that marking critical features
could highlight the current task and guidance learners away from
distraction [21, 22]. These studies together showed the benefit of
scaffolding to novices.

3 Methodology
3.1 Fox and Field
The main objective of our coding environment is to create a
condition-controlled platform to isolate various conditions as ex-
periment variables and provide tasks that could intuitively visual-
ize differences in problem-solving strategies among experts and
novices. Therefore, we developed a few fundamental design princi-
ples: (1)The coding language should be in the block-based structure
to provide a low floor (i.e., user-friendly) for different learners [23].
Study on block-based environments also indicate that by eliminat-
ing syntax errors and reducing the degree of freedom, learners
can focus on problem-solving and logical thinking [24]. (2) All
levels should map to CT skills. Table 1 lists core CT skills that are
commonly defined in literature [5, 20, 25, 26] and involved in our
coding environments.

For our research question, we designed a train and test level
with different conditions, which consisted of different maps and
level instructions. The conditions are listed in Table 2 and the
maps are shown in Figure 1. Experiment conditions came from
three dimensions, the first condition is whether the train level show
connected path (Figure 1a and 1b), the second condition is whether
the test level contains distract path (Figure 1c and 1d), the third
condition is whether the level instruction prompt for few codes
(Table 2, column Level Instruction). Scaffoldings came from two
aspects, the first is train level (i.e., structured practice opportunities
and demonstrating solutions to a task), the second is the level
instruction prompt (i.e., marking critical features).

3.2 Participants
Our participants recruitment was conducted at four universities in
the United States. We distributed flyers around the campus, emailed
through listservs and faculty, and compensated participants accord-
ingly. We only included upper-division undergraduate students to
ensure they had already taken their major courses to distinguish
experts and novices. In total, 233 students were enrolled and sched-
uled time, and 221 students actually showed up and completed the
study. We categorized 106 students who majored in CS, engineer-
ing, and similar subjects as experts and 115 students in other majors
(e.g., psychology, education, and humanities) as novices. Detailed
demographic information is listed in Table 3. All of our experiment
procedures were approved by the IRB in advance.

3.3 Experiment context
All of the experiments were conducted through online meeting soft-
ware and participants were randomly assigned to different game
conditions. Participants login their pre-assigned account using
their devices. Before the experiment began, two researchers briefly
introduced the coding environment and participants signed an elec-
tronic consent form and took a survey that included demographic
questions. We asked participants to share their screens while also
showing their faces through the webcam, and the shared screens
were videotaped. The experiment lasted for 1 hour and stopped im-
mediately regardless of whether the participants finished all tasks
or not. During the experiment, researchers did not provide any
help to participants. Participants could try as many times as they
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Figure 1: Game level conditions. 1a: Train 1 with no path shown; 1b: Train 2 with directly connected path; 1c: Test 1 and 2 with
no path shown; 1d: Test 3 and 4 with connected path shown; 1e and 1f: Efficient paths in red lines.

Table 1: Core CT skills involved in our environment.

CT Skills Game Features

Algorithmic Thinking Players learn to create step-by-step instructions to solve problems
Decomposition Players break down complex problems into smaller, more manageable parts
Pattern Recognition Players identify patterns or similarities in the tasks they are performing
Abstraction Players learn to focus on important information while ignoring irrelevant details
Debugging Players identify and fix errors in their code
Loop Players use repetitive sequences of blocks until a certain condition is met
Iteration Players refine their solutions through repeated cycles of testing and improvement

Table 2: Game conditions for distract path and efficiency instruction. Distract path indicates that the map has some connected
paths but not the fewest codes. Efficiency indicates a text prompt in the instruction for the fewest codes.

Conditions Map Conditions Instruction Condition Level Instruction

Train 1 No path No efficiency Get the fox to the base of giant mushroom
Train 2 Connected path No efficiency Follow the path to the base of giant mushroom
Test 1 No distract path No efficiency Touch the base of the giant mushroom, then the lilypad, then go

to the front door
Test 2 No distract path Efficiency Touch the base of giant mushroom, then the lilypad, then go to

the front door. Try to use as few codes as possible
Test 3 Distract path No efficiency Touch the base of the giant mushroom, then the lilypad, then go

to the front door
Test 4 Distract path Efficiency Touch the base of giant mushroom, then the lilypad, then go to

the front door. Try to use as few codes as possible

needed until they finished each level. Once finished, they could not
go back to that level.

3.4 Data Collection and Analysis
We collected background surveys, coding artifacts, coding process
logs, screen recording videos, and reflection surveys students’ an-
swered after finishing each level. For this study, we chose coding

artifacts as our main data source and analyzed artifacts of 221 stu-
dents who completed level 4. We ran every coding artifacts and
simulated the fox’s paths. We coded the paths as using right-angle
turns (RT) and using non-right-angle turns (NRAT). We leveraged
chi-square and logistic regression for quantitative analysis. For
those quantitative analysis, experts were coded as 1 and novices
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Table 3: Demographic of participants.

Demographic N(221) Percentage(100%) Demographic N(221) Percent-
age(100%)

Gender Years in studying
Woman 137 62% 2 years 47 21%
Man 64 29% 3 years 85 38%
Others 2 1% 4 years 73 33%
Prefer not to say 18 8% 4 years + 16 7%
Race/Ethics
White 123 56%
Africa America 13 6%
Asian 50 23%
Hispanic 15 7%
Others 2 1%
Prefer not to say 18 8%

were 0; NRATs were 1 and RTs were 0; efficiency instruction as 1
and no efficiency instruction as 0.

4 Results
4.1 RQ1: Are participants more likely to use the

non-right angle turn (NRAT) when they are
given an efficiency instruction?

In comparing the three conditions, a chi-square test indicates dif-
ferences in the use of the NRAT between conditions (p < .001), see
Figure 2. From a logistic regression of whether the participant used
the NRAT on dummy variables for whether the participant had
an efficiency instruction or distractor, the distractor was a statisti-
cally significant negative predictor of the use of NRAT (p < .001);
efficiency instruction had a positive non-statistically significant
association with the use of NRAT (p = .07).

Using a chi-square test of difference, majors were equally dis-
tributed across the test conditions (test of difference, p = .56). On
average, experts used NRATs more than did novices (p = .02), see
Figure 3. However, this difference did not come into play in the
non-efficiency, non-distractor path condition (p = .75). Experts
were directionally more likely to use NRATs in the other two condi-
tions, but these differences did not arise to statistically significant
levels when examined separately (efficiency, no distractor, p = .10;
efficiency with distractor, p = .08). When both efficiency instruc-
tor conditions were considered together, the percentage difference
between experts and novices who used NRATs (42% vs. 22%) was
statistically significant (p = .01).

A logistic regression of conditions and majors predicting NRAT
revealed major as a positive predictor of use of NRAT (p = .04) and
distractor condition as a negative predictor (p < .001), with a similar
coefficient to the model above without the major control (-1.5 in
each). Entering interactions between major and condition, none of
the interaction terms were statistically significant (ps > .05).

The directional results and the statistically significant results
from consideration of both efficiency conditions together are oppo-
site our hypothesis—the efficiency instruction scaffold appeared to
benefit experts more than it did novices.

Figure 2: Distribution of using RT and NRAT under different
test conditions.

4.2 RQ2: Are participants more likely to use the
NRAT depending on their training level
condition?

In our dataset, two training conditions are equally distributed
among four testing conditions (test of difference, p = .53). Fig-
ure 4 shows whether participants used an NRAT, depending on
their training condition. Those with condition training 2 (the con-
nected path) were more likely to use an NRAT on testing. This is
statistically significant from a chi-square test (p < .001).

When controlling for testing conditions, a logistic regression
estimated NRAT as a function of training conditions, testing effi-
ciency instruction, and the presence of the testing level’s distractor
path. A connected angle path in training (i.e., training 2) was a sta-
tistically significant positive predictor of using an NRAT on testing.
This was consistent across all testing conditions, see Figure 5.

5 Dicsussion
We answered our research questions through statistical analysis
on two kinds of scaffolding methods, which are efficiency instruc-
tion and prior conditional training level. Our results indicate that
explicit instruction and training level could both scaffold learners
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Figure 3: Distribution of using RT and NRAT under different test conditions and majors.

Figure 4: Distribution of using RT and NRAT under different
train conditions.

Figure 5: Distribution of using RT and NRAT under different
train and test conditions.

yet to different degrees. Our directional results and statistically sig-
nificant results proved that efficiency instruction scaffold benefits
experts more. Similarly, Sinha and Kapur suggested that novice
were largely unsuccessful at recognizing the value of scaffolding
while experts succeeded [27]. Considering the potential reasons,
research has consistently proven that when learners lack prior
domain-specific knowledge (i.e., NRAT in our context), they face
difficulties when solving well-structured problems [28]. This may

further reveal our research question, where the efficiency instruc-
tion only suggests learners use as few code as possible, yet does
not help them how to do so.

On the other hand, we observed that the difference in instruc-
tional scaffolding disappeared when participants were involved in
certain prior training levels, where the directly connected NRAT
path in training conditions indeed helps learners to perform better
than no path in the training condition. Our designed prior train-
ing level serves as marking critical features and demonstrating
solutions to a task in scaffolding strategy [9], as well as providing
structured practice opportunities [29]. Although such scaffolding
helps to improve performance by nearly 30% percent, distracting
paths at the test level still play an important role. Research sug-
gests several scaffoldings in addition to those involved in our study.
Guided attention scaffolding directs learners’ attention to the most
relevant information in the problem-solving process and minimizes
the chances of following distracting paths [30, 31]. Feedback loops
indicate regular and timely feedback to help learners stay on course
when they interact with distracting paths [32, 33]. More explo-
rations on combinations of these scaffolding are needed.

6 Conclusion
We designed a coding platform, Fox and Field, to determine what
kinds of scaffolds could encourage novice coders to perform more
like experts in problem-solving tasks. We recruited 106 experts and
115 novices for quantitative comparison. We found that explicit
instruction and critical features could scaffold novices to increase
code efficiency. We also found that purposefully distracting features
could deflect both experts and novices from the most efficient solu-
tion. Our findings could provide insights into learning environment
development to scaffold learning.
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